Bilgi paylaştıkça çoğalır.

Etiket: generatör

DİZEL JENERATÖR NASIL ÇALIŞIR?

Dizel Jeneratör Nasıl Çalışır?

Jeneratör nasıl çalışır sorusunun yanıt vermeden önce elektrik enerjisinin hayatımızdaki yerinden kısaca bahsetmek gerekmektedir. Hayatımızın en önemli enerji kaynaklarından biri olan elektrik enerjisi kesildiğinde en küçük haneden en büyük yerleşim alanlarına kadar insanların hayatları olumsuz yönde etkilenmektedir. Elektrik şebekelerinde doğal afet, yanlış işletme, insan hatası gibi insan kontrolünde veya dışında hatalar sebebiyle enerji kesintisi meydana gelebilmektedir. Özellikle kritik yüklerin var olduğu hastaneler, askeri tesisler, bankacılık merkezleri gibi bölgelerde enerji kesintisinin olmaması gerektiği, şebekenin enerjisi gitse bile bu tür yerlere elektrik enerjisinin devamının sağlanması büyük önem arz etmektedir. Jeneratör kelimesi İngilizce “generator” kelimesinden dilimize girmiş olup, elektrik üreteci anlamına gelmektedir.

Kabinsiz Bir Dizel Jeneratör Seti

Dizel Jeneratör Neden Kullanılır?

Dizel jeneratörler elektrik kesintilerine karşı yedek güç sağlama, şebekenin ulaşamadığı yerlere enerji temini sağlama, acil durumlarda ekstra güç ihtiyacını karşılama vb. gibi nedenlerle kullanılır. Özellikle kritik sistemlerde, hastanelerde, fabrikalarda ve diğer önemli tesislerde kullanılarak kesintisiz güç temin edilmesini sağlar. Dizel jeneratörler taşınabilir olduklarından, açık hava etkinlikleri, kampçılık, inşaat siteleri ve acil durum durumlarında mobil bir enerji kaynağı olarak kullanılabilirler. Ayrıca elektrik altyapısının olmadığı veya zayıf olduğu uzak bölgelerde enerji sağlamak için kullanılır. Bu, tarım arazileri, ormanlık alanlar veya dağlık bölgeler gibi yerlerde yaygın bir uygulamadır. Büyük endüstriyel tesisler, hastaneler, alışveriş merkezleri ve benzeri yerlerde, enerji talebini karşılamak ve sürekli güç sağlamak amacıyla da jeneratörler kullanılır. Felaket durumlarında, afet bölgelerinde veya acil durum kurtarma operasyonlarında, elektrik jeneratörleri ile enerji temini sağlanarak temel hizmetlerin devam etmesi mümkün olabilir. Özetle, dizel jeneratörler geniş bir uygulama alanına sahip olup, enerji güvenliğini artırmak ve çeşitli sektörlerde iş sürekliliğini sağlamak için kullanılırlar.

Dizel Jeneratörler Enerji Güvenliğini Artırmak ve Enerji Kesildiğinde Çeşitli Sektörlerde İş Sürekliliğini Sağlamak İçin Kullanılırlar.

Dizel Jeneratör Nasıl Çalışır?

Dizel jeneratör nasıl çalışır sorusuna direkt cevap vermektense, genel olarak jeneratör nasıl çalışır sorusuna cevap vermek daha doğru olacaktır. Dizel jeneratörler, genellikle bilinen ve yaygın olarak kullanılan jeneratör türüdür. Dizel, fosil akaryakıtlar kategorisine giren ve genellikle mazot olarak bilinen bir yakıt türüdür. Dizel jeneratörler, dizel yakıtla çalışan içten yanmalı bir motor ve buna uygun bir alternatörün akuple edilmesiyle oluşturulan bir elektrik üretim cihazıdır. Dizel motorların çalışma prensibi, otomobillerde bilinen şekilde dizel yakıtın oksijenle yanması esasına dayanır. Dizel, kendiliğinden alev alan bir yakıt türüdür. Motorun çalışma prensibi gereği, havanın sıcaklığı yükseltilir, yanma sonucu ortaya çıkan enerji pistonları itmekte kullanılır ve bu sayede hareket enerjisi elde edilir. Dizel motor tarafından üretilen hareket enerjisi alternatöre iletilir ve alternatör, bu enerjiyi elektrik enerjisine dönüştürür.

Dizel jeneratörler 5 kVA’dan 4000 kVA’ya güçte üretilebilir. Dizel jeneratörün gücü içten yanmalı motorun gücüyle orantılıdır. 1 fazlı veya 3 fazlı üretilebilir. Transformatörlerde olduğu gibi dizel jeneratörler paralel çalıştırılabilir. Her türlü senaryoya uygun otomasyon yapılabilir ve enerji kesinti süreleri kontrol edilebilir. Ayrıca kabinli ve kabinsiz olarak da tüm güç seçeneklerinin opsiyonları bulunur. Yüksek güçlerde çok gürültülü çalıştığından ses izolasyonlu kabinli uygulamaları çok kullanılır.

Dizel Jeneratörler 5 kVA’dan 4000 kVA’ya Kadar Güçte Üretilebilir.

Jeneratörlerde Prime Güç, Standby Güç ve Sürekli Güç Ne Anlama Geliyor?

Jeneratörlerde elektrik çıkış gücü prime güç, standby güç ve sürekli güç olarak üç şekilde tanımlanır. Sürekli güç, jeneratörün sabit yük altında sürekli çalışma gücünü ifade eder. Jeneratör bu güçte %100 yüklenebilir ancak aşırı yüklenemez. Sürekli şebekeye senkron çalışacak jeneratör projelerinde kullanılabilir. Standby güç ise değişken yük altında belirli sürede çalışabileceği gücü tanımlar. Örneğin genelde jeneratörler prime güçte %70 yük altında bir yılda ortalama 200 saat çalışabilir. Standby güçler tam yedek güçler için kullanılır. Bir yerin elektrik enerjisi gittiğinde, belirli yükleri belirli bir sürede çalıştırmak için Standby güç değeri jeneratörlerde belirtilir. Standby güçte de jeneratörler aşırı yüklenemez. Prime güç ise jeneratörlerin değişken yük altında sürekli çalışabileceği güç değerini belirtir. Yük değişken olsa da, jeneratörler ortalama en az %70 ile yüklenmelidir. Ayrıca ortalama 12 saatte, bir saat çalışarak %10 aşırı yüklenebilmektedir.

Kontrol Panosu Şasiye Monteli Kabinsiz Bir Jeneratör

Dizel Jeneratörlerin Yapısı

Jeneratörlerin yapısında içten yanmalı motor, alternatör, kontrol panosu, yakıt deposu ve şasi bulunur. Dizel motorlar mekanik veya elektronik tip governörlü (yakıt miktarını ayarlayan cihaz) olarak jeneratörde bulunur. Governör sayesinde hassas hız ayarı yapılabilmektedir. Alternatör ise hassas gerilim ayarı sağlayan elektronik tip voltaj regülatörlü olarak bulunur. Kontrol panoları, jeneratör şasisine monteli gelebilir veya ayrı olarak bulunur. Kontrol panolarında jeneratör kontrol cihazları, röleler, devre kesiciler, akım ve gerilim trafoları, sürücüler, kontaktörler gibi jeneratörün hızını, akımını, gerilimini, içerisinde bulunan pompaları izleyen ürünler bulunmaktadır.  Şasi ise dizel jeneratör setinin yükünü taşıyacak özelliktedir. Anti-vibrasyon takozları kullanılarak titreşim seviyesini minimuma indirgenir. Şasilerde kaldırma mapaları içerir. Böylece jeneratörlerin taşınmasında büyük kolaylıklar sağlanır. Genelde 1600 kVA’dan küçük güçteki jeneratör setlerinde yakıt deposu şasiye monteli, entegreli olarak bulunur. 1600 kVA’dan büyük güçteki jeneratör setlerinde ise dikdörtgen tip yakıt tankı jeneratör setinden ayrı bulunur. Her tipteki yakıt deposunda seviyesi göstergesi bulunmaktadır. Jeneratörlerin soğutması, tıpkı otomobil motorlarında olduğu gibi radyatörle sağlanır. Radyatör, genleşme tankı ve soğutucu fandan oluşan soğutma sistemi jeneratör ekipmanlarının uygun sıcaklık derecesinde çalışmasını sağlar. Dizel motorun daha verimli çalışmasını sağlayan turbo şarj sistemi  de intercooler soğutmasıyla beraber motorda bulunabilmektedir. Intercooler, turbonun havayı sıkıştırmasıyla daha çok ısınan havanın soğutulmasını sağlayan ek soğutucudur. Kontrol panolarında intercooler sıcaklık değeri sürekli takip edilir.

Dizel Jeneratör Komponentleri

Jeneratör kontrol cihazları çok fonksiyonel cihazlar olup, içerisinde PLC programı bile yazılabilecek özellikteki koruma cihazlarıdır. Akım ve gerilim okuyabilirken aynı zamanda analog ve dijital girişler & çıkışlar ile de jeneratörde izlenmesi gereken tüm parametreleri toplar. Hem alternatörün voltaj regülatörüne hem de motorun governörüne sinyal göndererek jeneratörün frekansını, gerilimini ve yüklenmesini kontrol eder. Kontrol cihazın türüne göre birçok haberleşme protokolü ile çalışabilen bu cihazlar jeneratörlerin beynidir.

Jeneratör Senkron Kontrol Panoları

Jeneratör Teknik Föylerinde Bulunan Parametreler

Jeneratör teknik föylerinde öncelikle jeneratörün üretici marka ve modeli, Standby güç (ESP) ve Prime güç (PRP) değerleri hem kVA hem de kW cinsinden yazar. Jeneratörün kabinli olup olmadığı ve buna göre boyut değerleri ve ağırlık bilgisi verilir. Teknik föyün bir sonraki sayfasında ise hem motor hem de alternatörle ilgili bilgiler bulunur. Motor markası ve modeli, markası,  silindir sayısı, hacmi, turbo şarj olup olmadığı vb. yazar. Bunun yanında motorun governör tipi, yakıt sarfiyatı, devir hızı, egzoz gazı sıcaklığı, yanma ve soğutma havası debileri yazar. Bu bilgiler kontrol panosundaki jeneratör kontrol cihazlarına program set ayarı yapılırken dizel motoru korumak için girilir. Ayrıca motor bölümünde dizel motorun yakıt sıkıştırma (kompresyon) oranı yazarken benzinli motorlarda hava & yakıt karışım oranı yazar. Alternatör bölümünde ise yine alternatör markası ve modeli, faz sayısı, kutup sayısı ve dolayısıyla frekansı, güç faktörü, izolasyon sınıfı ve koruma sınıfları yazar. Ayrıca alternatörün (generatörün) ikaz sistemi yani otomatik voltaj regülatörün modeli ve tipi gösterilir.

ASENKRON MOTORLAR | 2. BÖLÜM

ASENKRON MOTOR | 2. BÖLÜM

Asenkron motor yapısının, en önemli hesaplanması gereken parametreleri moment (tork), hız veya devri, kontrol düzenekleri ve yol verme işlemleridir. Bu bölümde asenkron motor eşdeğer devresi, parametreleri, moment hesabı ve yol verme çeşitleri gösterilecektir.

Asenkron Motor Eşdeğer Devresi

Asenkron motorların çalışma ilkesi ve temel yapısı itibariyle transformatörlere benzediği için eşdeğer devresi transformatörlere çok benzerdir. Makinenin karmaşık yapısında primer ve sekonder sargılarındaki akan akımları, momenti, güç faktörünü, güç değerlerini, kayıpları hesaplamak amacıyla sadece bir fazın modelini çıkarmak ve bunun üzerinde hesaplarını yapmak daha kolaydır. Simetrik yapıya sahip asenkron motorlarda diğer fazlarında aynı modelin varlığı kabul edilerek hesaplamalar yapılır. T tipi ve L tipi olmak üzere iki türlü eşdeğer devre tipi vardır. Hesapların kolay yapılması sebebiyle genelde L tipi eşdeğer devre kullanılır. Asenkron motorların L tipi eşdeğer devresi aşağıdaki gibidir.

Asenkron Motorların L Tipi Eşdeğer Devre Modeli

Burada Vo statora uygulanan gerilimi, I1 stator akımını, Rs stator direncini, Xs stator kaçak reaktansını, Rr rotor direncini, Xr rotor kaçak reaktansını, Im boşta çalışma akımını, Xm manyetik reaktansı, I2 rotor akımını ve E ise rotorda indüklenen akımı temsil etmektedir.

Asenkron motorlarda Im ile gösterilen boşta çalışma akımı, stator ile rotor arasında bulunan ince fakat büyük manyetik direnç gösteren hava aralıklarından dolayı transformatördekinden daha büyüktür. Çünkü transformatörde manyetik direnç gösteren yapı hava değil, silisli saclardan oluşan manyetik nüvedir.

Asenkron Motor Moment Hesabı

Asenkron motorun L tipi eşdeğer devreye göre moment formülü aşağıdaki gibidir.

    \[M\;=\frac{m.p}{2\mathrm{πf}}\frac{R_r^'}s\frac{V_1^2}{Z^2}\]

Buradaki Z ile gösterilen eşdeğer devrenin L tipindeki empendasını ifade ederken, m faz sayısını, p kutup çifti sayısını, V1 ve f statora uygulanan gerilim ve frekansını göstermektedir.

Moment formülüne ve makinenin hızına göre asenkron motorun hız-moment grafiği aşağıdaki şekilde olur.

Asenkron Motorların Hız-Moment Grafiği

Grafiğe bakılacak olursa; motor senkron hızdayken (teoride mümkün olmayan) rotorun hızı sıfırdır. Motorun kalkınması için belli bir kalkış momenti (Mo) vardır. Bu durumda rotor hızı sıfırdır bunu motorun yenmesi gerekir ki motor kalkınsın ve dönmeye başlasın. Motor kalktıktan sonra belli bir hız değerinden sonra veriminin düştüğü görülmektedir. Yani devrilme momentini (Mk) aşmıştır. Makinenin devrilme momentini aşmaması gerekir. Bu durumdaki hızına devrilme hızı (nk), kaymasına ise devrilme kayması (sk) denir. Bu parametrelere göre moment formülünden devrilme momenti hesaplanır. Özetle asenkron motorlarda hız ayarı yapılırken veya yol verilirken kalkış momentini yenmesi ve devrilme momentini aşmaması gerekmektedir.

Asenkron Motorlara Yol Verme İşlemi

Durmakta olan motorun stator sargılarına gerilim uygulandığında rotor hareketsiz olduğundan indüklenen emk sıfırdır. Dolayısıyla ilk anda motorun eşdeğer devresi kısa devre durumundadır ve çekilen akım kısa devre akımıdır. Bu yüksek akımın rotor sargılarında yarattığı kuvvet ile üretilen momente yol verme momenti denir. Rotor bunun etkisiyle dönmeye başlar. Hızın artması ile indüklenen zıt emk artar ve şebeke gerilimine ters yönde olduğundan, başlangıçta çekilen büyük kısa devre akımı yavaş yavaş düşmeye başlar. Motorun miline bağlanmış ve sürülmekte olan herhangi bir iş makinesinin karşıt momenti (frenleyici momenti), motorun kendi ürettiği momente eşit olunca, motor ve iş makinesinden oluşan ikili sabit bir hızda dönmeye devam eder. Bu geçici işleme yol verme işlemi denir.

Sincap Kafesli Asenkron Motorun Bağlantı Kutusu, Rotor ve Stator Yapıları

Yol verme sırasında şebekeden çekilen akımın büyük olması, şebekede geçici ve yüksek gerilim düşümlerinin meydana gelmesine, dolayısıyla gerilim dalgalanmalarına neden olur.  Bu istenmeyen bir durumdur. Bunun yanı sıra bu akım, makine sargılarında yüksek kayıplara sebep olur. Sargı sıcaklığının yükselmesine neden olur ve bu durum motora zarar verebilir. Bu yüzden yol verme işlemini yaparken bu tip durumların göz önünde bulundurulması gerekir. Yol verme işleminde şebekeden çekilen akımın yüksek olmamasına ve yol verme işleminin çok kısa sürede tamamlanması gerekir. Aşağıda asenkron motorlara yol verme işlemlerinden bazıları gösterilmektedir.

  • Oto-transformatör kullanmak
  • Sargı bağlantısında yıldız/üçgen değişimi yapmak
  • Akım sınırlayıcı bir direnç kullanarak yol vermek
  • Derin oluk etkisinden yararlanmak
  • Rotorda çift kafes kullanmak
  • Bileziklere direnç bağlamak
  • Yardımcı bir motor kullanmak
  • Güç elektroniği düzenleri (sürücüler, yumuşak yol vericiler) kullanmak

Bu düzeneklerden en çok güç elektroniği düzenleri yani sürücüler (driver), yumuşak yol vericiler (soft starter) kullanmak ve yıldız üçgen yol vermek işlemleri kullanılır.

ASENKRON MOTOR NASIL ÇALIŞIR?

Asenkron Motor Nedir, Neden Kullanılır?

Asenkron motorlar, en çok elektrik yükü olarak kullanılan elektrik makinesidir. Hem uygun maliyette üretilmesi hem de fazla bakım gerektirmemesi sebebiyle son derece tercih edilen bir motor tipidir. Bir fazlı ve üç fazlı olarak üretilirler. Bir fazlı asenkron motorlar küçük güçlü olarak çamaşır makinesi, buzdolabı, pompa gibi yapılarda kullanılırken üç fazlı asenkron motorlar ise daha çok endüstriyel tesislerde ve fabrikalarda konveyör sistemlerinde, CNC tezgahlarda vb. uygulamalarda kullanılır. Asenkron motor çalışma prensibi itibariyle kullanımı kolay ve kontrolü güç elektroniği devreleri yardımıyla talep edilen hızlarda ve torkta çalışmaları, kontrolünün çok kolay yapılması vb. gibi avantajları bulunduğundan piyasada en çok kullanılan elektrik makineleridir.

Endüstriyel Tesislerde Asenkron Motor Kullanımı

Asenkron Motorların Konstrüksiyonu

Asenkron motorlar, yapısı itibariyle iki sargıdan oluşur. Bu sargılardan birinin görevi manyetik alanı yaratmak, diğerinin görevi ise hareketi sağlayacak olan kuvveti üretmektir. Bu sebeple dönme hareketini yapacak parçanın (rotorun) daire kesitli olması gerekir. Sabit olan kısım ile dönme hareketi yapan kısım arasına hava aralıkları yerleştirilir. Hava aralığında sarf edilen amper-sarımın küçük olması için, manyetik direnci demirinkinden büyük olan hava aralığının minimum olacak şekilde tasarlanması gerekir. Bunun için de hareketsiz parça (stator) da aynı rotor gibi yine daire kesitli yapılır. Asenkron motorlar rotor yapılarındaki farklılığa göre ikiye ayrılırlar.

  • Sincap kafes rotorlu asenkron motorlar
  • Bilezikli rotorlu asenkron motorlar

Sincap Kafes Rotorlu Asenkron Motor Çalışma Prensibi

Kısa devre çubuklu asenkron motor olarak da adlandırılır. Rotor silindirindeki açılan oluklara yerleştirilen sargılar, silindirin her iki ucundan kısa devre edilirler. Kısa devre edilmesinden dolayı bu sargılardan bir akım akar ve manyetik alanın etkisiyle Biot-Savart yasası gereği iletkene dik bir kuvvet etki eder. Böylece rotor dönmeye başlar.

Uçları Kısa Devre Edilmiş Sincap Kafes Yapısı

Bilezikli Rotorlu Asenkron Motor Çalışma Prensibi

Bilezikli rotorlu asenkron motorun rotor kısmına, statorda olduğu gibi üç fazlı sargılar yerleştirilir. Sargı uçları, fırça ve bilezikler yardımıyla harici olarak enerji verilmek üzere motor gövdesinde yer alan bağlantı kutusuna çıkarılır. Bileziklerin üzerine karbon fırçalar yerleştirilir. Böylece sargılar dış devreyle bağlantı kurulması sağlanır. Üzerinden geçecek akımın şiddetine göre karbon fırçalar farklı alaşımlardan yapılabilir.

Bilezikli Rotorlu Asenkron Motor Yapısı

Asenkron Motor Çalışma Prensibi

Asenkron motor çalışma prensibi gereği, ilk hareketini yapması elektromanyetik ilkelere dayanır. Statora alternatif gerilim uygulandığında, stator sargılarından bir akım akar ve bu akım bir alternatif manyetik döner alan ve akısı yaratır. Döner alanın meydana getirdiği manyetik akı çizgileri makinenin çevresinde döner. Döner manyetik alan hızına senkron hız denir. Senkron makinelerde rotor hızı, döner alanın yarattığı senkron hızda dönerken, asenkron makinelerde rotor bu hızdan farklı bir hızda dönmektedir. Bu yüzden bu makinelere asenkron makineler denir. Frekans ve makinenin kutup sayısıyla senkron hızı belirler. Elektrik makinelerinde senkron hız formülü aşağıdaki gibidir.

    \[n_s=\frac{60f}p\]

Bu formülde Ns senkron hızı tanımlarken, f frekansı ve p ise elektrik makinesinin (generatör, alternatör, motor) kutup çifti (2 kutuplu makinenin kutup çifti sayısı p, 1 olur) sayısını belirtmektedir.

Döner manyetik alan senkron hızla, kısa devre edilmiş, durmakta olan rotor iletken düzlemlerinden geçerek rotor akımlarını indükler. İndükleme sonucunda oluşan kuvvetler ise, rotorun dönme hareketine başlamasına ve zamanla hızlanmasına neden olur. Rotor, Biot-savart yasası gereği kendisine etkiyen kuvvetlerin yardımıyla büyük bir ivme ile kalkar ve hızlanır. Bu kalkış esnasında, statora gerilim verildiği anda, henüz rotor duruyor iken makine bir transformatör gibi çalışır. Bu esnada makinenin transformatörden tek farkı, sekonder sargıların her iki tarafındaki manyetik devrenin birer hava aralığı ile stator manyetik devresine bağlı olmasıdır. Transformatörlerde hatırlanacağı gibi primer ve sekonder devre bir nüve (çekirdek) ile manyetik olarak birbirlerine bağlı idi. Bu esnada asenkron motorun stator sargılarında şebeke gerilimi ve frekansı varken, rotor sargılarında ise çevirme oranından kaynaklı daha indüklenmiş daha düşük gerilim vardır fakat frekans aynıdır. Bu değişme oranı bilezikli rotorlu asenkron motorlarda yaklaşık olarak bir civarındadır. Bu andan itibaren hızlanan rotor ile döner alan arasında arasındaki hız farkı azalmaya başlar. Dönmekte olan manyetik alan vektörü, rotorun iletken düzlemlerinden birim zaman içerisinde daha az geçmeye başlar. Dolayısıyla rotorda indüklenen gerilim azalır ve akım küçülür. Rotora etkiyen kuvvet de küçülür. Bu sırada ivmelenme devam ederken rotorun oluşturduğu dönme kuvveti, karşıt kuvvet olan yataklardaki sürtünme kuvveti ile hava ile olan sürtünme kuvvetleriyle eşit olduğunda ivme sıfırlanır ve motor sürekli aynı hızda dönmeye devam eder. Asenkron motor çalışma prensibi bu şekilde özetlenebilir.

Sincap Kafesli İndüksiyon Motorunun İç Yapısı

Rotor hızı dengeye ulaştığında senkron hıza yakın bir değerde ama daha düşük bir hızda dönmektedir. Rotor hızıyla döner alan hızı arasındaki fark çok küçüktür. Rotor hiçbir zaman kendiliğinden döner alan hızına erişemez. Erişse bile, döner alan vektörü rotor iletken düzlemlerinin içinden geçemez ve dolayısıyla rotor sargılarında bir gerilim indüklenemez ve kuvvet üretemez. Ancak dışarıdan bir ekstra tahrik ile döndürülürse bu hızı aşabilir, o zaman da zaten generatör modunda çalışıyor demektir.

Asenkron Makinelerde Kayma

Döner elektrik makinelerinde kayma deyimi çok önemlidir. Makinenin çalışma yapısını belirler. Elektrik makinelerin çalışabilmesi için alternatif döner manyetik alana, dolayısıyla manyetik akıya ihtiyacı vardır. Üç fazlı döner elektrik makinelerinde stator sargılarındaki döner manyetik alan hızı (yani senkron hızı) ile rotor hızının arasındaki farkın, senkron hıza göre oranı kayma değerini verir ve “s” ile gösterilir. Formülü aşağıdaki gibidir.

    \[s=\frac{n_s-n}{n_s}\]

Kayma değerine bağlı olarak aşağıdaki tabloda asenkron makinelerin çalışma şekilleri gösterilmiştir.

nsnsÇalışma Şekli
nsn0Motor Çalışma
nsn>nss<0Generatör Çalışma
-nsns>1Fren Çalışma
nsn=nss=0Boşta Çalışma
nsn=0s=1Transformatör Çalışma

İlk harekete geçme esnasında, rotor hareketsiz iken asenkron makine sekonderi kısa devre olan bir transformatör gibi çalışır. Hareket başladıktan sonra, sürekli çalışma noktasına ulaşıncaya kadar çalışma şekli motor çalışmadır. Çünkü bu durumda elektrik enerjisi şebekeden çekilir ve  mekanik enerjiye dönüştürülür. Rotor hızının hiçbir şekilde kendiliğinden senkron hıza erişemeyeceğinden, erişse bile o anda rotor sargısında gerilim değerinin sıfır olacağından makine bir güç üretmeyecektir ve boşta çalışacaktır. Senkron hıza kendiliğinden erişemeyen rotorun dışarıdan bir kuvvet yardımıyla senkron hızı aşması durumu ise generatör çalışma modudur. Çünkü artık makinenin girişinde harici mekanik güç verilirken, çıkışından elektrik enerjisi alınmaktadır. Motor çalışan bir makinenin döner alanın saat ibresi yönünde döndüğü ve sargılarına verilen üç fazlı akımların R,S,T sırası ile bağlı olduğu kabul edilsin. Bu durumda rotorun dönüş yönü, döner alanın dönüş yönündedir. Fazların sıralamasında iki fazın yerini değiştirilirse (örneğin R,T,S gibi) makineye hakim olan döner alanın yönü değişir. Rotor döner alana uyarak yavaşlamaya başlar ve frenlenmiş olur. Bu geçici duruma da fren çalışma modu adı verilir. Eğer makinenin faz sırası R,T,S olarak bırakılırsa, önce yavaşlar, sonra kısa bir süreliğine durur. Daha sonra ters yönde dönmeye başlar. Sürekli çalışma noktasına kadar hızlanır, bu noktaya geldiğinde motor olarak sürekli çalışmaya devam eder.

GENERATÖRLERİN KISA DEVRE AKIMINA ETKİSİ

Güç şebekelerinde herhangi bir noktada meydana gelen kısa devre akımının hesaplanmasında endüktif yükler ve generatörler (üreteçler) önemli rol oynar. Özellikle senkron veya asenkron generatörlerin yapısı gereği endüvi reaksiyonu, uyarma alanı, stator ve rotorda meydana gelen kaçak reaktanslar kısa devre akımını etkiler. Bu neden generatörlerin üç tip kısa devre reaktansı vardır. Bunlar subtransient (başlangıç), transient (geçici) ve sürekli reaktans olarak isimlendirilir. Bu reaktanslar, kısa devre arıza akımı oluştuktan hemen sonraki ilk periyotta etkili olur ve başlangıçta kısa devre akım genliğinin, efektif değerinin yükselmesine neden olmaktadır. Bu konu generatöre yakın kısa devre ve generatöre uzak kısa devre olarak iki ana başlıkta incelenmektedir.

Generatöre Yakın Kısa Devre Analizi

Kısa devre arızası boyunca generatörün uyarma alanı, endüvi reaksiyonundan dolayı zayıflar ve generatörün gerilimi, arıza önceki değerine göre azalır. Bu da generatörün empedansının artması demektir (generatör gücünü sabit kaldığını düşünecek olursak). Empedansın artması kısa devre akımını düşürmesi anlamına gelir ki generatöre yakın kısa devre analizinde subtransient süresi generatörden uzak kısa devre arıza akımına göre daha çok daha kısadır. Darbe kısa devre akımı ve başlangıç kısa devre akımı bu nedenden dolayı hemen düşer ve kararlı hale gelir. Kısa devre akımı endüvi reaksiyonuna sebep olur generatörün uyarma alanını zayıflatır. Bu nedenle de generatörün ürettiği EMK’yı azaltır. Bu sürede kısa devre akımı bir süre daha kararsızdır, bu süreye transient (geçici) süre denir. Daha sonra ise kısa devre akımı kararlı bir hal alır. Özetle, aşağıdaki grafikte görüldüğü gibi generatörün bulunduğu bir hatta kısa devre olduğu zaman subtransient süresi çok kısa, transient süresi biraz daha uzun sürer ve arıza akımı kararlı bir hal alır.

Generatöre Yakın Kısa Devre Akımı Değişimi

Generatöre Uzak Kısa Devre Analizi

Kısa devre arızası generatörden uzak bir noktada meydana gelirse, generatör empedansının etkisi, şebeke empedansının etkisinin yanında çok düşük kalır, etkisini kaybeder. O zaman kısa devre akımının geçici hal süreleri değişir. Bu değişim aşağıdaki grafikteki gibi olur. Şekilden anlaşılacağı gibi, başlangıç kısa devre akımının değeri, sürekli kısa devre akımın değerine çok yakındır. Bunun nedeni ise, şebekenin empedansı generatör empedansından daha büyük olduğu için generatör uçlarında daha büyük bir EMK, dolayısıyla gerilim oluşur. Bu gerilim, yükleri bir süre daha besleyeceğinden kısa devre akımını küçültmüş olur. Dolayısıyla arıza oluştuktan sonraki ilk periyotta arıza akımı değişimi çok büyük olmaz.

Generatöre Uzak Kısa Devre Akımı Değişimi

Sonuç olarak, kısa devre analizi yaparken güç sisteminde bir generatörün olup olmadığı bilinmelidir. Çünkü eğer sistemde generatör varsa, arıza başladıktan sonraki ilk periyotta başlangıç kısa devre akımı ve darbe akımı daha yüksek çıkabilir. Bu değere göre koruma elemanlarının anahtarlama boyutlandırılması yapılması gerekmektedir.