Bilgi paylaştıkça çoğalır.

Ay: Mayıs 2024

JEOTERMAL SANTRAL NASIL ÇALIŞIR?

Jeotermal Santral Nasıl Çalışır?

Jeotermal Santral Nedir?

Jeotermal santral nasıl çalışır sorusuna yanıt vermeden önce jeotermal enerjinin ne demek olduğu belirtilmelidir. Jeotermal enerji, dünyanın derinliklerindeki sıcak kaynaklardan elde edilen doğal bir enerji kaynağıdır. Bu enerji, yer altındaki sıcak kayaçlar, magma, ve volkanik aktivite gibi doğal süreçler sonucunda oluşur. Jeotermal enerji, hidrotermal kaynaklardan üretilir. Bu kaynaklar, yer kabuğunun derinliklerinde bulunur ve yeryüzündeki havzalardan beslenirler. Gaz ve minerallerle zenginleşmiş buhar ve su, hidrotermal kaynakların karakteristik özellikleridir ve sıcaklık dereceleri bölgeye göre değişebilir. Jeotermal kelimesi, Yunanca kökenlidir ve “geo” (dünya) ile “termal” (ısı) kelimelerinin birleşiminden gelir. Jeotermal enerji, elektrik üretimi, ısıtma, ve seracılık gibi çeşitli alanlarda sürekli kullanılmaktadır. Jeotermal enerjiyi elektrik enerjisine dönüştüren tesislere ise jeotermal santral denir.

Jeotermal enerji, elektrik üretimi, ısıtma, ve seracılık gibi çeşitli alanlarda sürekli kullanılmaktadır.

Jeotermal Santral Nasıl Çalışır?

Jeotermal santraller, yerin derinliklerindeki sıcak su ve buharı kullanarak elektrik üretirler. Jeotermal santral nasıl çalışır sorusuna cevap olarak ısı kaynağı, rezervuar, örtü kaya, beslenme alanı ve ısıyı taşıyan akışkanlar olmak üzere dört ana unsurdan oluştuğunu belirtmek gerekir.

İlk olarak jeotermal enerji kaynağın bulunması gerekir. Yani uygun jeotermal kaynakların belirlenmesi sürecidir. Bu kaynaklar genellikle volkanik bölgelerde veya tektonik plakaların sınırlarında bulunur. Jeotermal kaynakların varlığını belirlemek için jeolojik araştırmalar, sondajlar ve jeofiziksel yöntemler kullanılır. Jeotermal sahalarda santral yeri belirlenirken, mimarlarla birlikte elektrik, jeoloji, inşaat ve makine mühendislerinin bilgi birikimi ve sentezi gereklidir. Seçilen jeotermal sahanın işletme modellemesi yapılır ve üretim ile geri-basım (re-enjeksiyon) kuyusu yerleri belirlenerek delme işlemi gerçekleştirilir. Kuyu testleri başarılı olduğunda, santral tipi ve enerji miktarı kesinlik kazanır. Bu aşamada, santral yerine göre değişen yardımcı servis güçleri de hesaplanabilir. Yer seçimi yapılırken jeotermal santralin üretim kuyusuna yakınlığı, kot farkı, akışkan basıncı, geri basım kuyusuna yakınlık, şebeke senkronizasyonu için enterkonnekte sisteme yakınlık ve arazi yapısı göz önünde bulundurulmalıdır.

Jeotermal Enerjiden Elektrik Üretimi

Daha sonra jeotermal kaynaklardan sıcak su ve buhar, derin sondajlarla yüzeye çıkarılır. Bu sıcak su ve buhar, genellikle yüksek basınç altında bulunur ve jeotermal sondajlar aracılığıyla yüzeye ulaştırılır. Jeotermal santrallerde, yüzeye çıkarılan sıcak su ve buhar, türbinler aracılığıyla elektrik enerjisine dönüştürülür. Sıcak su veya buhar, bundan sonrası aynı termik santrallerde olduğu gibi türbinlerin kanatçıklarını çevirerek mekanik enerji oluşturur. Bu mekanik enerji, jeneratörler (senkron generatörler) aracılığıyla elektrik enerjisine dönüştürülerek elektrik şebekesine aktarılır.

Jeotermal rezervuarlar, deniz suyu, kar, magmatik sular ve yağmurlar gibi doğal kaynaklar tarafından beslenerek oluşur. Bu rezervuarlar, yeraltındaki çatlaklı ve gözenekli kayaç kütlesinde bulunur. Re-enjeksiyon ve sürekli yeraltı koşulları sayesinde, jeotermal rezervuarlar sürdürülebilir ve yenilenebilir özelliklerini korurlar ve kısa süreli atmosferik koşullardan etkilenmezler. Jeotermal rezervuarlardan yapılan sondajlı üretim tamamlandığında, jeotermal akışkanın çevreye atılmasını önlemek ve rezervuarı yeniden beslemek için işlevini tamamlamayan akışkanların yeraltına yeniden enjekte edilmesi gerekmektedir. Bu sisteme re-enjeksiyon denir ve jeotermal tesisin sürekliliği açısından çok önemlidir.

Jeotermal Enerjinin Faydaları Nelerdir?

Jeotermal enerji, sürekli olarak yenilenebilir kaynaklardan gelir. Jeotermal kaynaklar, güneşin ve yerin içindeki radyoaktif elementlerin neden olduğu doğal süreçlerle oluşur. Bu nedenle, jeotermal enerji, doğal kaynaklar tükendiği sürece sürekli olarak kullanılabilir. Jeotermal enerji, diğer fosil yakıtlara kıyasla çevre dostudur. Jeotermal santraller, karbondioksit (CO2), sülfürdioksit (SO2) gibi sera gazları ve hava kirleticileri salmazlar. Bu nedenle, jeotermal enerji kullanımı, sera gazı emisyonlarının azaltılmasına ve hava kalitesinin iyileştirilmesine katkıda bulunur. Ayrıca Jeotermal santraller, yerel ekonomilere katkı sağlayabilir. Jeotermal enerji, genellikle bölgesel olarak bulunur ve yerel iş imkanları yaratarak ekonomik kalkınmayı teşvik eder, doğal kaynaklara dayanan bir enerji kaynağı olduğundan, enerji arzının güvenliğini artırır. Ülke jeotermal kaynaklara sahipse, enerji ithalatını azaltabilir ve dışa bağımlılığı azaltabilir. Jeotermal enerji, sürdürülebilir, çevre dostu ve ekonomik bir enerji kaynağı olarak gelecekte enerji ihtiyacının karşılanmasında önemli bir rol oynayabilir. Jeotermal santrallerin teknolojik gelişmelerle birlikte daha verimli hale gelmesi ve jeotermal enerjinin kullanımının yaygınlaşması, dünya genelinde enerji dönüşümünü hızlandırabilir ve iklim değişikliği ile mücadelede etkili bir araç olabilir.

Jeotermal enerji, sürdürülebilir, çevre dostu ve ekonomik bir enerji kaynağı olarak gelecekte enerji ihtiyacının karşılanmasında önemli bir rol oynayabilir.

Jeotermal enerji başta elektrik enerjisi üretimi olmak üzere, mineral ve Hidrojen, Lityum, Karbondioksit, ağır su, gübre gibi kimyasal madde üretiminde, tüketim amaçlı mineralli sularda, proses ısısı temininde, endüstriyel amaçlarda ve kurutmada, sera ısıtması, merkezi ısıtma ve soğutmada, (30 °C) gibi düşük sıcaklıklarda kültür balıkçılığında ve termal turizm yani kaplıcalarda kullanılır.

Türkiye’de Jeotermal Santrali Var mı?

Jeotermal enerji Türkiye için yerli, yenilenebilir, temiz, ekonomik ve çevre dostu bir yeraltı kaynağıdır. Türkiye, jeolojik ve coğrafik konumu sayesinde dünya genelinde önemli bir jeotermal potansiyele sahiptir, çünkü ülkemiz aktif bir tektonik kuşak üzerinde yer almaktadır. Ülkemiz Dünya’da en çok jeotermal enerji kullanan beş ülkeden biridir. Türkiye’nin dört bir yanında, değişik sıcaklıklarda yaklaşık 1.000 adet doğal çıkış şeklinde jeotermal kaynaklar bulunmaktadır. Genelde Batı Anadolu Bölgesi’nde toplanmıştır. Ancak jeotermal kaynaklarımızın %90’ı genellikle orta ve düşük sıcaklıklarda bulunur ve çeşitli endüstriyel uygulamalarda, termal turizmde ve ısıtma gibi doğrudan kullanım alanlarında değerlendirilir. Bu kaynakların %10’u ise daha yüksek sıcaklıklarda bulunur ve elektrik enerjisi üretimi gibi dolaylı uygulamalar için daha uygun niteliktedir. Türkiye’de şu an yaklaşık 1800 MW jeotermal kurulu gücü bulunmakta olup, toplam kurulu güç içerisindeki oranı yaklaşık %1,7 olarak düşünülebilir.

Türkiye’nin Jeotermal Haritası

RÜZGAR SANTRALİ NASIL ÇALIŞIR?

Rüzgar Santrali Nasıl Çalışır?

Rüzgar santrali nasıl çalışır sorusunu sormadan önce enerji kaynağımız rüzgarı tam olarak tanımak gerekir. Rüzgar, gezegenimizin yapısı gereği ısınma ve soğuma farklılıklarından kaynaklanan hava hareketleridir. Rüzgar enerjisi ise bu hava akımlarının elde edilen hareket enerjisi olarak düşünülebilir. Havanın yüzeyde hareket etmesini sağlayan ve rüzgarın hızını etkileyen ana kuvvetler basınç, Dünya’nın dönmesinden kaynaklanan bir saptırıcı kuvvet, havanın merkezkaç ve sürtünme kuvvetleridir. Rüzgarlar genellikle bir merkez etrafında dolaşır ve merkezkaç kuvveti olarak bilinen bir kuvvet etkisi altında bulunurlar. Sürtünme kuvveti ise rüzgar hızını azaltır ve özellikle yer yüzeyine yakın bölgelerde etkisini gösterir. İnsanoğlu rüzgarın bu enerjisini kullanmayı sağlayan teknolojiyi bulmuştur. Rüzgar enerjisi, yenilenebilir enerji kaynakları arasında önemli bir yere sahiptir ve dünya genelinde enerji üretiminde giderek artan bir rol oynamaktadır. Rüzgar santralleri, rüzgarın kinetik enerjisini elektrik enerjisine dönüştüren sistemlerdir.

Rüzgar santralleri çöl dahil her yere kurulabilir.

Rüzgar Santrali Nasıl Çalışır?

Rüzgar santrali nasıl çalışır sorusunun en genel cevabı rüzgarın hareket enerjisini kullanarak elektrik enerjisi üretmesi olarak düşünülebilir. Temel prensip, rüzgarın santral pervanesine çarpmasıyla oluşan dönme hareketinin jeneratör tarafından elektrik enerjisine dönüştürülmesidir. Bu işlemin belirli adımlarda meydana gelir. Rüzgar, genellikle yükseklikte konumlandırılmış olan türbin adı verilen dev pervanelere çarpar. Pervanelere bağlı rotor, rüzgarın yönüne göre otomatik olarak döner. Rotorun dönüşü, şaft üzerindeki dişli kutusuna gider ve bir asenkron generatörün (jeneratörün) talep ettiği şekilde momenti ve devir sayısını değiştirir. Asenkron generatör (jeneratör), mekanik enerjiyi elektrik enerjisine dönüştüren temel bileşendir. Jeneratör, dönme hareketini elektrik enerjisine çevirir. Elde edilen alternatif akım (AC) genellikle elektrik şebekesine aktarılır veya depolanmak üzere batarya sistemlerine yönlendirilir.

Rüzgar Santrali

Rüzgar Santrali Ekipmanları

Rüzgar santralleri karmaşık sistemlerdir ve çeşitli bileşenleri içerir. Genel olarak şu ekipmanlar bulunmaktadır.

Rüzgar Santrali Ekipmanları

Pervane (Türbin): Bu bölüm, rüzgarın kinetik enerjisini mekanik enerjiye dönüştüren rotor mili tarafından taşınır. Genellikle hafif ancak dayanıklı malzemelerden yapılan, örneğin polyester veya fiber-glass gibi malzemeler kullanılır.

Rotor: Pervaneleri (türbinleri) dişli kutusuna bağlayan bölümdür.

Dişli Kutusu: Rüzgarın hareket enerjisinin torkunu ve devir sayısını değiştirerek asenkron generatöre iletir.

Jeneratörler: Rüzgar enerjisini elektrik enerjisine dönüştüren elektrik makinesidir. Elektrik makinesi türlerinden asenkron generatördür.

Şaft ve Dişliler: Rotoru jeneratöre bağlayan ve dönme hareketini ileten yapılardır.

Kontrol Sistemleri: Anemometre, rüzgar vanası, fren gibi yapıların bulunduğu rüzgar hızı, yönü ve gücünü izleyen ve optimize eden sistemlerdir. Bu sistemler, rüzgar santralinin verimliliğini artırmak ve aşırı yüklenmeyi önlemek için önemlidir.

Temel ve Kule: Rüzgar türbininin yerine sabitlenmesini sağlayan temel ve genellikle yüksekliği artırmak için kullanılan kulelerdir. Kuleler genellikle çelik veya betondan yapılmıştır.

Rüzgar Santrali Ekipmanları

Rüzgar Santrali Nasıl Çalışır? Rüzgar Türbini Çeşitleri

Rüzgar santrali nasıl çalışır sorusu cevaplandıktan sonra RES’in en önemli ekipmanı türbinleri detaylıca incelemek gerekir. Birçok çeşit rüzgar türbini bulunmaktadır.  Dönme eksenine, devir sayısına, gücüne, kanat sayısına, rüzgar etkisine, dişli kutusu özelliklerine göre veya kurulum yeri özellerine göre rüzgar türbinleri bulunmaktadır. Bunlardan en çok kullanılan sınıflandırmalardan olan dönme eksenine ve kanat sayısına göre sınıflandırma yapılacaktır.

Dönme Eksenine Göre Rüzgar Türbinleri

Yatay Eksenli Rüzgar Türbinleri

Bu türbinlerde, dönme ekseni rüzgar yönüne paralel olarak yerleştirilir ve kanatlar rüzgarın yönüne dik konumlanır. Kanat sayısı azaldıkça, rotorun dönme hızı artar. Bu türbinlerin verimliliği yaklaşık olarak %45’tir. Yer seçimi genellikle, türbinin yerden 20-30 metre yüksekte olması ve çevredeki engellerden 10 metre yüksekte olması şeklinde yapılır. Bu yükseklik, daha güçlü ve sürekli rüzgar akışı için idealdir ve çevredeki yapılardan etkilenmeyi minimize eder. Kanat sayısını belirlemek için bir hesap kullanılır. Rüzgar hızı, rotor kanadının uç hızına bölünerek elde edilen orana kanat uç hız oranı denir. Eğer bu değer 1-5 arasında ise çok kanatlı rotorlar, 6–8 arası ise, üç kanatlı rotorlar, 9–15 arası ise, iki kanatlı rotorlar ve 15’ten büyük ise tek kanatlı rotorlar kullanılır. Dünya genelinde en çok kullanılan türbin çeşididir yatay eksenli rüzgar türbinleridir. Bu tür türbinler, genellikle daha yüksek verimlilik ve kararlılık sağlamak için tercih edilir.

Düşey Eksenli Rüzgar Türbinleri

Düşey eksenli rüzgar türbinleri, yatay eksenli de olduğu gibi geleneksel bir pervane görünümüne sahip değildir, çünkü milleri dikey bir yapıya sahiptir. Pek ticari anlamda kullanılmazlar. Yatay eksende yerleştirildikleri için kuleye ihtiyaçları ve dolayısıyla maliyetleri ortadan kalkar. Ayrıca, sistem istenilen rüzgar yönüne çevrilebilir, bu nedenle dümen sistemine ihtiyaç duyulmaz. Verimleri düşüktür. Darrieus ve Savonius tipi olmak üzere iki çeşittir.

Darrieus tipi düşey eksenli rüzgar türbinlerinde, düz tip bir Darrieus tasarımı bulunur. Bu türbinlerde, dikey olarak yerleştirilmiş iki kanat vardır ve bu kanatlar, türbin mili uzun eksenine yaklaşık olarak bir elips oluşturacak şekilde bulunur ve böylece aerodinamik etki sayesinde kanatların içbükey ve dışbükey yüzeyleri arasındaki çekme kuvveti farkı nedeniyle dönme hareketi oluşur. Rüzgarın tek yönden estiği durumda, türbinin ürettiği güç, sinüsoidal bir eğri oluşturur.

Savonius tipi rüzgar türbinleri, yapısı biraz daha farklıdır ve genellikle iki ya da üç adet kepçe şeklinde tasarlanmıştır. En çok kullanılan tip olanı, iki adet kepçenin bulunduğu ve “S” şeklini andıran bir görüntüye sahip olanıdır. Savonius türbinlerinde, akışkan içbükey kanatlar sayesinde dönel hava akışı meydana gelir ve bu türbini döndürür. elektrik üretimi için pek tercih edilmezler. Daha çok su pompalama veya rüzgâr ölçümlerinde kullanılan anemometreler gibi küçük uygulamalarda tercih edilirler.

Yatay ve Düşey Eksenli Rüzgar Türbinleri

Eğik Eksenli Rüzgar Türbinleri

Eğik eksenli rüzgar türbinleri, dönme eksenleriyle rüzgar yönü arasında bir açı oluşturan türbinlerdir. Bu tür türbinlerde, kanatlar ile dönme eksenleri arasında belirli bir açı bulunur. Çok tercih edilen bir türbin çeşidi değildir.

Kanat Sayısına Göre Rüzgar Türbinleri

Rüzgar türbinleri, kanat sayısına göre farklı kategorilere ayrılır. Bunlar tek kanatlı, çift kanatlı, üç kanatlı ve çok kanatlı olarak sınıflandırılı.

Tek Kanatlı Rüzgar Türbinleri

Tek kanatlı rüzgar türbinlerinin kullanımının temel amacı, pervanelerin üzerindeki yüksek rotasyonel hızı düşürmektir. Ancak, bu tür türbinler aerodinamik açıdan dengesizdir ve kontrol edilmesi için orta göbek kısmına ek yapılar eklenmesi gerekebilir. Ayrıca, yüksek aerodinamik gürültü seviyeleri gibi bazı dezavantajları vardır. Üç kanatlı pervanelerle karşılaştırıldığında, tek kanatlı türbinlerin üç kat daha yüksek hızlarda çalışması gerekebilir ve bu da genellikle daha fazla gürültüye neden olabilir.

Çift Kanatlı Rüzgar Türbinleri

Eskiden çift kanatlı rüzgar türbinleri Avrupa ve Amerika’da çeşitli pervane çaplarında yaygın olarak kullanılmıştır. Bunlar, üç kanatlı türbinlere göre daha ekonomik görünebilir ancak dinamik etkiler nedeniyle ek ekipmanlara ihtiyaç duyarlar ve bu da üç kanatlı türbinlerle aynı maliyete gelir. Üç kanatlı türbinlerden farklı olarak, çift kanatlı türbinler dönme sırasında ve kuleye yatay eksende ek bir atalet momenti yaratır. Bu, türbine ek bir yük getirir ve yalnızca sallanan bir göbekle giderilebilir. Böylece oluşabilecek atalet değişimlerinin önüne geçilir.

Üç Kanatlı Rüzgar Türbinleri

Günümüzde en yaygın olarak kullanılan rüzgar türbinlerinden biri üç kanatlı türbinlerdir. Bunun nedeni, pervanenin tüm hızlarda sabit bir atalet momentine sahip olmasıdır. Üç veya daha fazla kanada sahip olan tüm pervaneler bu avantaja sahiptir ve genellikle rüzgar türbinlerine ek bir yük getirmezler.

Çok Kanatlı Rüzgar Türbinleri

Çok kanatlı rüzgar türbinleri, küçük güçlü uygulamalarda uzun süre sadece su pompalama gibi işlemlerde kullanılmıştır ve moment gereksinimlerini karşılayabilmek için çok kanatlı olarak üretilmiştir. Bu tür türbinler düşük hızlarda çalışır ve genellikle pervane göbeğinden uçlara doğru genişler. Bir dişli kutusu vasıtasıyla pervanenin devir sayısı artırılarak jeneratör miline iletilir. Rüzgar gülleri olarak da adlandırılan çok kanatlı rüzgar türbinleri, rüzgar yönünü her zaman dik olarak alabilmesi için bir rüzgargülü yönlendiricisi taşırlar.

Birçok çeşit rüzgar türbini bulunmaktadır.

Rüzgar Santrali Nasıl Çalışır? Rüzgar Santrallerinin Şebekeye Bağlanması

Güç sistemine bağlanan rüzgar türbinlerinin, şebeke kalitesi problemlerine yol açmayacak şekilde planlanması büyük önem taşır. Bu nedenle, bir rüzgar santralinin şebekeye bağlanması durumunda karşılaşılabilecek potansiyel sorunlar ve kısıtlamalar, yapılacak statik ve dinamik simülasyon çalışmalarıyla önceden belirlenmelidir. Bu çalışmalar sayesinde, rüzgar enerji santralinin (RES) şebekeye entegrasyonu ve hatta türbin konvertörü seçimi doğru bir şekilde yapılabilir. Bu planlama süreci, güvenilirlik, istikrar ve şebeke uyumluluğu gibi faktörleri göz önünde bulundurarak gerçekleştirilmelidir. Bu şekilde, rüzgar enerjisi sistemlerinin şebekeye entegrasyonu sorunsuz bir şekilde sağlanabilir ve istikrarlı bir elektrik tedariki sağlanabilir.

Trafo merkezleri bazen kulenin yukarısında jeneratör odasında bazen de kule dışında bulunur.

Öncelikle kulenin tepesindeki pervanenin bağlı olduğu rotorun bulunduğu bölümde dişli kutusu ve asenkron generatör bulunur. Buradan üretilen elektrik enerjisi OG kablolarla kulenin aşağı kısmında OG odasındaki gaz izoleli RMU hücrelere girer. Burada gaz izoleli hücrelerin kullanılmasının nedeni, yapısının küçük olmasından dolayı kule içerisine sığabilmesindendir. Hücreler, giriş-çıkış olmak üzere iki veya üç adet gaz izoleli hücreden oluşarak asıl üretim tesisinin dağıtım tesisine bir step-up trafo (eğer gerilimin yükseltilmesi durumunda) merkezine gider. Bazı uygulamalarda ise kuru tip yükseltici step-up transformatör ile RMU gaz izoleli orta gerilim hücreleri kulenin yukarısındaki jeneratör odasında da bulunabilir. Trafo merkezindeki orta gerilim hücreleri sayesinde fider koruma röleleri vs. ile ana koruma ve şebeke senkronizasyonu yapılır. Buradaki röleler ve kontrol sistemleri vasıtasıyla rüzgar santralinin aktif güç ve frekans kontrolü sürekli olarak yapılır. Çünkü yapısı gereği rüzgar hareketlerini kontrol edemediğimizden rüzgar santrallerinde 50 Hz frekans değerini bulmak biraz daha karışıktır ve zordur. Bu yüzden bu değerlerin anlık sürekli olarak izlenmesi ve şebekeyi bozucu yönden bir etki etmesinin önüne geçilmelidir.

Rüzgar santralinin yerinin belirlenmesinde mühendisler aerodinamik hesaplar yapar.

RES’lerin (Rüzgar Enerji Santrallerinin) Elektrik Piyasası Şebeke Yönetmeliği’nde belirlenen aktif güç oranına uygun şekilde, şebeke bağlantı noktasında belirli bir miktarda reaktif güç kapasitesini sağlayabilme yeteneğine sahip olmaları gerekmektedir. Rüzgar türbini üreticileri genellikle her bir türbin için yüklenme eğrisini sağlayabilirler, ancak burada önemli olan nokta, reaktif güç kapasitesinin şebeke yönetmeliğine göre şebeke bağlantı noktası için tanımlanmasıdır. Bu nedenle, türbine bağlı transformatörler, rüzgar santrali OG şebekesi ve gerekiyorsa santral ana transformatörü gibi bileşenlerde meydana gelebilecek reaktif güç kayıpları ve RES OG şebeke gerilimi dikkate alınarak hesaplanmalıdır. Bu hesaplamalar, şebekede istikrarlı bir elektrik enerjisini ve şebeke uyumluluğunu sağlamak için önemlidir.

Rüzgar enerjisi elde etmek için, optimum rüzgar koşullarının olduğu bölgelere rüzgar türbinleri kurulur. Optimum rüzgar seviyesi, genellikle yerden 10 – 50 metre yükseklikte ve saatte en az 4 metre hızla esen rüzgar anlamına gelir. Rüzgar santralleri, temiz ve sürdürülebilir bir enerji kaynağı olarak önemli bir potansiyele sahiptir. Bu makalede, rüzgar santrallerinin temel çalışma prensipleri ve bileşenleri hakkında genel bir bakış sunulmuştur. Rüzgar enerjisi teknolojilerindeki sürekli gelişmelerle birlikte, rüzgar enerjisi daha verimli ve ekonomik hale gelmekte ve küresel enerji dönüşümünde önemli bir rol oynamaya devam etmektedir.