Bilgi paylaştıkça çoğalır.

Etiket: gerilim

ÜÇ FAZLI SİSTEMLER

Alternatif akım tek fazlı (monofaze) veya üç fazlı (trifaze) olarak kullanılır. Biz elektrik enerjisini üç fazlı olarak üretiyor, iletiyor ve dağıtıyoruz. Faz demek, bir sinyalin (bu akım veya gerilim olabilir) değer olarak sıfırdan geçerek pozitif değerler almaya başladığı noktanın referans (başlangıç) noktasına göre değeridir. Monofaze sistemlerde bir faz ve nötr vardır. Trifaze sinyallerde ise üç faz bulunur. Üç fazlı sistemler üçgen veya yıldız bağlanır ve bu bağlantı şekline göre devrede nötr bulunur ya da bulunmaz.

Üç Fazın Fazörel Gösterimi

Üç Fazlı Sistemlerde Akım ve Gerilim Hesapları

Üç fazlı akım veya gerilim üç adet dalga formuna sahip olan alternatif akım (AC) sinyallerinden oluşan, birbirlerinden 120 derece farklı faz açılarına sahip dalga formlarıdır. 50 Hz frekansta alçak gerilim dağıtım sistemlerinde kullanılan faz-nötr 220VAC iken, faz-faz arası gerilim 380VAC’dir. 60 Hz’de ise alçak gerilimde faz-nötr 110VAC, faz-faz arası gerilim 208 VAC’dir. ABD’de bazı noktalarda bu değer 240VAC veya 480 VAC olabilmektedir. Üç faz akım ve gerilimin her bir genliği aynı ancak faz arasındaki açı farkı 120 derecedir.

Üç faz akım ve gerilim hesapları fazörel işlemlerle yapılır. Aşağıda gerilim için hem fonksiyon olarak hem de fazörel olarak formüller bulunmaktadır.

    \[U_1(t)=U_m\sin wt\]

    \[U_2(t)=U_m\sin(wt-120^0)=U_m\sin(wt+240^0)\]

    \[U_3(t)=U_m\sin(wt+120^0)=U_m\sin(wt-240^0)\]

Üç fazın fazörel gösterimleri aşağıdaki gibidir.

    \[U_1=U\angle0^0\]

    \[U_2=U\angle-120^0=U\angle240^0\\\]

    \[U_3=U\angle120^0=U\angle-240^0\\\]

    \[U=\frac{U_m}{\sqrt2}\\\]

Üç Fazın Grafiksel Gösterimi

Üç Fazlı Sistemlerde Yıldız Bağlantı ve Akım & Gerilim Formülleri

Yıldız bağlı üç fazlı sistemlerde nötr vardır. Her faz, kendisine ait çıkış uçları birbirleriyle birleştirilerek elde edilir. Birleşme noktasından çıkan iletken ise nötr iletkenidir.  Burada faz akımları (Ia, Ib ve Ic), hat (fazlar arası) akımına, (Iab, Ibc ve Iac) eşit ancak fazörel olarak aralarında 120 derece bulunacak şekilde değerdedir.. Hat gerilimleri (Vab, Vac, Vbc) ise faz gerilimlerinin (Va, Va, Vb), genlik olarak V3 katı kadardır ve fazörel olarak aralarında 120 derece bulunacak şekilde değerdedir.

Üç Fazlı Sistemlerde Yıldız Bağlantı

Yıldız bağlantıda akım ve gerilim formülleri aşağıdaki şekilde verilmiştir.

    \[U_{hat}=\sqrt3\;U_{faz}\\\]

    \[I_{hat}=I_{faz}\\\]

Üç Fazlı Sistemlerde Üçgen Bağlantı ve Akım & Gerilim Formülleri

Üç fazlı sistemlerde üçgen bağlantı yaparken her bir fazın çıkışı diğer bir fazın girişine bağlayarak elde edilir. Üçgen bağlantı da nötr yoktur. Dolayısıyla faz gerilimi (Va, Va, Vb), hat gerilimine (Vab, Vac, Vbc) gerilimine genlik olarak eşit ancak fazörel olarak aralarında 120 derece bulunacak şekilde değerdedir. Hat akımlarının (Iab, Ibc ve Iac) genlik değeri,  faz akımlarının (Ia, Ib ve Ic), V3 katı kadardır ve fazörel olarak aralarında 120 derece bulunacak şekilde değerdedir.

Üç Fazlı Sistemlerde Üçgen Bağlantı

Üçgen bağlantıda akım ve gerilim formülleri aşağıdaki şekilde verilmiştir.

    \[U_{hat}=U_{faz}\\\]

    \[I_{hat}=\sqrt3I_{faz}\\\]

Üç Fazlı Sistemlerde Güç

Alternatif akım sistemlerinde güç faktörüne göre görünür güç (VA), reaktif güç (VAr) ve aktif güç (W) birimleri bulunur. Üç fazlı sistemlerde toplam güç, üç fazın toplamıdır.

    \[P_{aktif}=P_1+P_2+P_3\\\]

    \[Q_{reaktif}=Q_1+Q_2+Q_3\\\]

    \[S=P+iQ=S\angle\varphi\\\]

Buradaki açı değeri, aktif ve reaktif gücün arasındaki açı farkına göre sistemin güç katsayıdır.

Dengeli bir sistemde toplam aktif güç;

    \[P_t=3P=3\;U_{faz}\;I_{faz}\;\cos\left(\varphi\right)=3\frac{U_{hat}}{\sqrt3}\;I_{hat}\;\cos\left(\varphi\right)=\sqrt3\;U_{hat}I_{hat}\;\cos\left(\varphi\right)\\\;\]

Dengeli bir sistemde toplam reaktif güç;

    \[Q_t=3Q=3\;U_{faz}\;I_{faz}\;\sin\left(\varphi\right)=3\frac{U_{hat}}{\sqrt3}\;I_{hat}\;\sin\left(\varphi\right)=\sqrt3\;U_{hat}I_{hat}\;\sin\left(\varphi\right)\\\;\]

Görünür güç S ise aşağıdaki formülle hesaplanır.

    \[S=\sqrt3\;U_{hat}I_{hat}\;\\\;\]

Üç Fazlı Sistemlerde Dengeli ve Dengesiz Yüklenme

Üç fazlı bir yükün her fazına bağlanan empedans büyüklüğü (hem genlik hem de açı olarak) eşit ise, bu yüke dengeli yük denir. Yük aslında çekilen akım olarak düşünecek olursak, dengeli yüklenme de akım değerleri yukarıda verilen formüllerle hesaplanabilmektedir. Dengesiz yük durumunda ise her bir fazdan farklı değerlerde akım geçer. Yani farklı empedans büyüklüğü (hem genlik hem de açı olarak) bağlanmış  olarak düşünülür ve eşdeğer devresi oluşturulur. Dengesiz yük hem yıldız hem de üçgen bağlantı durumunda yukarıdaki formüller pek doğru hesaplama yapamaz. Dolayısıyla fazörel olarak hesap yapmak gerekir. Çünkü yıldız bağlantıda tüm faz akımlarının genlikleri farklıdır ve aralarındaki açı artık 120 derece değildir. Üçgen bağlantıda ise zaten faz akımları birbirinden farklıydı ve her bir fazdaki empedans değerine bağlı olarak farklı değerler elde edilmektedir. Burada empedansın omik, endüktif ve kapasitif olma durumuna göre fazörel işlemler vasıtasıyla akımların genlikleri ve faz açıları hesaplanmaktadır.

Neden Elektriği Üç Fazlı Olarak Kullanıyoruz?

Üç fazlı sistemlerin elektrik üretiminde, iletiminde ve dağıtımında önemli avantajları bulunmaktadır. Bunlardan bazıları aşağıdaki gibidir.

  • Yüksek güç seviyelerinde ve daha az kayıpla ve daha verimli bir şekilde enerji aktarımı sağlanır.
  • Büyük ölçekli enerji üretimi, iletimi ve dağıtımı için kullanılır. Enerji iletiminin çok fazlı yapılması, tek fazlı hatlara göre daha ucuzdur. Aynı gücün çok fazlı olarak iletilmesinde, gerilim değeri artarken akım değeri düşeceğinden kayıplar azalır. Kullanılan iletkenin kesiti de küçülür.
  • Endüstriyel uygulamalar ve büyük güç gerektiren uygulamalar için oldukça yaygın kullanım alanı vardır. Örneğin, manyetik döner alan gerekli elektrik motorlarının çalıştırılması, ısıtma ve soğutma sistemleri, aydınlatma sistemleri ve daha birçok uygulama için üç fazlı sistemler kullanılır. Özellikle elektrik motorlarında tek fazlı sistemlerinde tek fazlı olarak büyük bir güç çekildiğinde motorun momenti de değişeceğinden motorda titreşim/salınım olur. Eğer bu güç üç fazlı olarak üç parça halinde çekilirse motorun momenti daha düzgün olup, titreşimleri (salınımları) en az olur. Bu yüzden büyük güçlü motorlar üç fazlı olarak üretilirler.
  • Daha az kablo kesiti kullanımı ve daha küçük boyutlu elektrik motorları gibi diğer bileşenlerin kullanılmasına da olanak tanır. Bu da maliyetleri düşürür.
  • Aynı boyuttaki üç fazlı sistemler, bir fazlı sisteme göre daha büyük güç verir.

GÜÇ SİSTEMLERİNDE KISA DEVRE | 1. BÖLÜM – KISA DEVRE NEDİR?

Kısa Devre Arızası Nedir?

Elektriği güç santrallerinde üretiyor, transformatörlerle gerilimi artırıp enerji iletim hatlarıyla taşıyor, yine transformatörlerle gerilimi düşürüp tüketicilere (yüklere) dağıtıyoruz. Bu hat üzerinde bir arıza olduğunda enerji kesintisi riski bulunmaktadır. Bu arıza türlerinden biri kısa devre akımı arızasıdır.

Kısa devre, bir devrede genellikle farklı gerilimli iki veya daha fazla noktanın bağıl olarak düşük direnç veya empedans üzerinden kaza veya kasıt ile birbirine temasına denir (IEC) / (IEEE Std.100-1992). Herhangi bir kısa devre anında oluşan akıma kısa devre akımı denir ve kısa devre akımının genliğini, kaynaktan yüke kadar olan empedansların toplamı belirler. Bu durumda sistemde, kaynak ile kısa devre noktası arasında empedans çok düşer ve akım alabileceği en yüksek değerini alır.

Diğer bir tabirle, gerilim altındaki iletken kısımların birbirine veya nötrü topraklanmış olan devrelerde toprağa teması ile kısa devre oluşur. Kısa devre genellikle bir fazda ve kısa zamanda diğer fazlara sıçrayarak üç fazlı kısa devreye dönüşebilir. Gerilim atlamaları genellikle ark aracılığı ile meydana gelir. Üç fazlı kısa devre arızası, diğer arıza tiplerine göre daha az meydana gelir.  Kısa devre arızası esnasında akım yolu üzerindeki tesis elemanları, kısa devrenin termik ve dinamik etkilerine maruz kalırlar. Eğer doğru bir selektivite hesabıyla ve anahtarlama ekipmanlarının seçimiyle yeterli koruma sağlanmamışsa can ve mal kayıpları meydana gelebilir.

Kısa Devre Arızası Neden Oluşur?

Kısa devrenin kaynağı iç veya dış etkenler olabilir. Kısa devreye neden olabilecek başlıca iç etkenler aşağıdaki gibidir.

  • Aşırı yüklenme sonucu izolasyonun bozulması
  • Aşırı gerilimler sonucu meydana gelen delinmeler ve atlamalar
  • İzolasyondaki yapım hataları ve yaşlanmalar

Başlıca dış etkenler aşağıdaki gibi sıralanabilir.

  • Kablo ve izoleli hava hattı iletkenlerinin izolasyonlarının zedelenmesi
  • Havai enerji iletim hatları ile atmosfere açık elektrik tesislerine yıldırım düşmesi
  • Havai iletim hattı izolatörlerinin kırılması
  • Atmosferik şartlardan (kirlenme, rutubet, hava hatlarına konan kuşlar vb.) dolayı oluşabilecek gerilim atlamaları
  • Havai iletim hatlarında kar, buz ile oluşabilecek atlamalar
  • Transformatör merkezlerine giren çeşitli hayvanların, topraklanmış kısımlar ile gerilim altındaki kısımlar arasında veya fazlar arasındaki teması
  • Bakım veya operasyon esnasında güvenlik amacı ile kapatılan topraklama ayırıcılarının tesisatta tekrar gerilim verilirken unutulmaları ve yanlış manevralar

Kısa Devre Arızasının Olumsuz Etkileri Nelerdir, Nasıl Koruma Sağlanır?

Kısa devre arızasının oluşturabileceği başlıca olumsuz etkiler aşağıdaki gibidir.

  • Sistem elemanlarında mekanik ve ısıl zorlamalar
  • Uzun süreli enerji kesintileri
  • Can ve mal kaybı
  • Trafo ve elektrik odalarında meydana gelebilecek patlamalar
  • İnsanların yoğun olarak bulunduğu mekanlarda patlamalar ve yangınlar

Kısa devre arızasından korunmak için çeşitli anahtarlama elemanları kullanılır. Bunların başında kesiciler gelir. Hem alçak gerilim hem de orta ve yüksek gerilimde kısa devreden koruyan anahtarlama elemanı kesicilerdir. ETAP, PSCAD gibi yazılımlarla hesaplanan en yüksek kısa devre akım değerine göre kesicinin koruma yapacağı kA akım değeri belirlenir. Selektivite hesabı yapılır. Böylece hangi noktalara hangi değerde kesicilerin konulacağı, ne zaman açma yapacağı doğru bir şekilde belirlenmesi gerekir. Alçak gerilimde kesiciler genelde 150-200 kA değere kadar hızlı bir şekilde (milisaniyeler içerisinde) açma yapabilir. Orta gerilimdeki kesiciler ise özel uygulamalar haricinde genelde 40 kA değerine kadar koruma yapabilmektedir.

Bunun dışında güç şebekelerindeki motor, generatör, transformatör gibi ekipmanların yıldız noktalarını bir şönt direnç bağlayarak kısa devre akımları sınırlandırılır. Aynı şekilde enerji iletim hatlarına şönt reaktörler bağlanarak yine kısa devre akımlarının değerleri sınırlandırılabilmektedir.

ELEKTRİĞİN TEMEL KAVRAMLARI

ELEKTRİĞİN TEMEL KAVRAMLARI

Akım

İletkenlerde elektrik akımı serbest elektronlar tarafından oluşur. Normalde hareketsiz duran serbest elektronların, devreye bir gerilim uygulanması sonucunda oluşan elektrik alanın etkisiyle hareket etmelerine elektrik akımı denir. Elektronların belirli bir yöndeki hareketi elektrik akımını oluşturur. Bu akımı oluşturan ana etken elektrik yük miktarıdır. Birçok nedenden dolayı elektron alan veya veren maddeler negatif veya pozitif yüklü hale gelirler. Uluslararası birimler sisteminde elektrik yükü birimi Coulomb’tur ve “Q” ile sembolize edilir. 1 Coulomb’luk elektrik yükü yaklaşık 6,24×1018 elektronu içerir. Bu yüzden de bir elektronun taşıdığı elektrik yük miktarı 1,6×10-19 Coulomb olarak hesaplanır. Elektrik akımın değeri ise birim zamanda geçen elektrik yük miktarının hesaplanmasıyla bulunur. Birimi Amper’dir ve “A” ile sembolize edilir. Yani akımı bulmak için iletkenden akan yük miktarını zamana böldüğümüzde, o iletkenden geçen akım değerini hesaplamış oluruz.

İletkenden geçen yük miktarı (dolayısıyla akımın değeri) birim zamanda değişmiyorsa buna doğru akım (DC akım – Direct Current), değişiyorsa alternatif akım (AC akım – Alternating Current) denir.

Doğru ve Alternatif Akım

Gerilim

Elektrik devrelerinde elektrik alanı meydana getirip, elektronları hareket ettiren ve elektrik akımını meydana getiren kuvvete gerilim denir. Gerilim aynı zamanda potansiyel fark veya elektromotor kuvvet olarak da ifade edilir. Birim yük üzerindeki enerji büyüklüğüdür. Birimi Joule/Coulomb veya kısaca bilinen Volt’tur ve “V”, “U”, “E” gibi harflerle sembolize edilir. Gerilim aslında iki nokta arasında bir potansiyel farktır. Devreden akım akması için bu potansiyelin olması gerekir. Değeri ve yönü zamana bağlı olarak değişmeyen gerilime doğru gerilim, değişene alternatif gerilim denir.

Güç

Birim zamanda yapılan iş miktarına güç denir. Gücün büyüklüğü bir elektrik cihazının birim zamanda harcadığı enerjiyi veya yapacağı işi ifade eder. Elektriksel güç, akım ve gerilimle doğru orantılı olduğundan bu iki kavramın çarpımına eşittir. Birimi Voltamper, kısaca “VA” olarak sembolize edilir. Doğru akım devrelerinde toplam güç değeri aktif güce eşit olduğundan birimi Watt olarak da ifade edilmektedir. Alternatif akım devrelerinde reaktif güç de var olduğundan görünür güç VA olarak sembolize edilir.

Basit Elektrik Devresi

Enerji

Genel olarak iş yapabilme yeteneğine enerji denir. Her şeyin bir enerjisi vardır. Termodinamiğin birinci kanununa göre; evrende enerji yoktan var edilemez ve var olan enerji de yok edilemez. Elektrik enerjisini kullanmamızın sebebi onu başka türlü bir enerjiye çevirerek iş yapmaktır. Örneğin elektrik sobaları, fırın, ütü gibi rezistif özellikteki yükler elektrik enerjisini ısı enerjisine çevirir. Elektrik ampulü ise ışık enerjisine çevirir. Yani bize gerekli olan enerjiye dönüştürmek için elektrik enerjisini kullanırız. Bu yüzden dünyadaki enerji sorununu çözmek için, elektrik enerjisinin üretimini, iletimini, depolanmasını ve verimli kullanımını geliştirmek gerekir. Güç genel anlamda birim zamanda harcanan enerji ise, enerjiyi hesaplamak için güç ve zaman değerlerini çarparak elde ederiz. Elektrik enerjisini elde etmek için güç ve zaman değerlerinin çarpımında, aynı zamanda güç değerinin içerisinde akım ve gerilim parametreleri de olduğundan enerjinin büyüklüğü akım, gerilim ve zamanla doğru orantılı olduğunu söyleyebiliriz.

Elektrik devre elemanları aktif ve pasif elemanlar olmak üzere ikiye ayrılır. Pasif elemanlar elektrik enerjisini harcayan ve/veya depolayıp devreye geri veren elemanlardır. Örnek olarak direnç, kondansatör, bobin (indüktans) gibi elemanlar sayılabilir. Aktif elemanlar ise enerji üreten, devreyi besleyen elemanlardır. Devreyi besleyen enerji kaynakları bu gruba girer.

Direnç

Genel anlamda bir maddenin akıma karşı gösterdiği zorluğa direnç denir. Her maddenin direnci maddelerin yapısı gereği birbirlerinden farklıdır. Direncin değeri, maddenin boyuna, özgül direncine ve kesitine bağlı olarak değişir. Dolayısıyla direnci farklı olan maddelerden farklı akımlar akar. Birimi Ohm’dur ve “Ω” olarak sembolize edilir.

Kapasitör – Kondansatör

Elektrik yüklerinin depolanması özelliğine kapasite denir. Bu etkiye sahip, elektrik yüklerini depolayan devre elemanına kondansatör (kapasitör) denir. Bir iletkenin yük miktarının, devredeki iki ucu arasındaki gerilime oranı o elemanın kapasitesini (kapasitans) ifade eder. Birimi Farad’dır ve “F” ile sembolize edilir. Bir kondansatörün uçlarına bir 1 V’luk bir gerilim uygulandığında, 1 Coulomb’luk elektrik yükü depo edebilen kapasitans değeri 1 Farad’dır.

Bobin

Bobin – İndüktans

Manyetizma çok geniş bir konudur. Çok detaya inmeden başlıca bilinmesi gereken parametreleri açıklayacak olursak; manyetik alan, içinden akım geçen bir iletkenin etrafında oluşturduğu alanı ifade eder. Kuvvet çizgileriyle ifade edilir ve N kutbundan S kutbuna doğru yönlenir. Bir mıknatısa ait bu manyetik kuvvet çizgilerinin tamamına ise manyetik akı denir. Birimi Weber’dir ve “Wb” ile sembolize edilir. Birim yüzeyden dik olarak geçen manyetik kuvvet çizgilerinin sayısına ise manyetik akı yoğunluğu veya manyetik indüksiyon denir. Birimi Tesla (Wb/m2)’dır ve “B” ile sembolize edilir.

Elektromanyetizmada indüktans, bobinin manyetik alan içerisinde enerji depolama özelliğine sahip devre elemanıdır. Genel olarak bobin diye bilinir. Birimi Henry’dir ve “L” harfi ile sembolize edilir. Bobinler (veya indüktanslar) alternatif akım sistemlerinde çok önemli bir yer tutar. Generatör, motor, transformatör gibi elektrik makinelerinde, enerji iletim hatlarında, kablolarda vb. ürünlerin bulunduğu elektrik devre sistemlerinde akımın, gerilimin, kısa devre akımlarının hesaplanmasında önemli rol oynamaktadır.